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Mars 2020 Onboard Scheduler

• M2020 Rover mission is developing an onboard scheduler to utilize unexpected 
additional resources (time, energy, data volume) from prior onboard execution.

• The Mars 2020 Onboard Scheduler is a (Rabideau and Benowitz 2017)
• single-shot, non-backtracking scheduler that 
• schedules in priority first order and 
• never removes or moves an activity after it is placed during a single scheduler run. 
• Activities are not preempted
• It does not search except for

• Valid intervals calculations
• sleep and preheat scheduling.
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Activity D is pinned to this time. If Activity D has 
resource conflicts with B it will not be scheduled.
Even if B could have been scheduled somewhere else, 
B will not be removed after it has been scheduled.



Challenges with Priority Setting 

• Finding a priority set for a non-backtracking scheduler is difficult.
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• Finding a priority set for multiple invocations of a non-backtracking 
scheduler is more difficult.
• Finding a priority set for multiple invocations of a non-backtracking scheduler 

while taking into account execution uncertainty is even more difficult than that.
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Different sets of activities could have 
already executed in the schedule

Activity D finishes late and C can no 
longer fit in the schedule.

Activity D finishes early and C and B 
can be scheduled earlier.

• The order (activity priority) in which activities are considered for 
scheduling will greatly affect how many activities can be scheduled and the 
efficiency of the of the plan.



Preferred Time

• Activities can be given a preferred time. 
• Scheduler will try to place the activity as close to 

the its preferred time as possible
• Defaults to earliest valid time.

• Preferred time can drastically affect the 
effectiveness of the schedule.
• Can affect whether or not activities will be able to 

be scheduled.
• Can affect how long certain setup activities will 

take.
• E.g. Preheats take longer earlier in the day when it is 

colder.

• Other parameters may affect the effectiveness 
of the schedule, but are not considered for 
this paper.
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Squeaky Wheel

• The Squeaky Wheel Optimization Algorithm consists of 
three components – the Constructor, Analyzer, and 
Prioritizer – that repeat until an acceptable solution is 
found or time runs out [Joslin & Clements, 1998].

• The Constructor generates a schedule (lightweight, 
fast) as the solution.
• In our case, the constructor is the Onboard Scheduler 

(Surrogate).
• Its inputs are the requested activities, dependencies, 

resource and time constraints, and activity priorities.
• The Analyzer takes the solution, determines the 

problem areas, and assigns blame to those areas.
• The Prioritizer takes the blamed elements (activities) 

and assigns them new parameters so that the 
Constructor may generate a better solution.
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Parameter Search

• A single output schedule from the Constructor is 
insufficient when dealing with execution uncertainty.

• In Parameter Search, the Constructor is ran through a 
Monte Carlo of (lightweight) simulations.
• Activity final execution durations are varied based on a 

probabilistic model of plan execution.
• All plan executions are then passed as the Solution to the 

Analyzer.
• The Analyzer assigns blame to every unscheduled 

activity.
• We present multiple Prioritizer variants
• Repeat until we find a priority set that satisfies some 

measure of “goodness” OR a certain step bound (time 
limit) is reached.
• “Goodness” is evaluated through a scoring function 

described in Empirical Results
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Constructor
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Analyzer (Scoring)

• Primary Metric: Number of activities scheduled
• Secondary metrics
• Handover SOC – SOC leftover at the end of the plan
• Cumulative distance from each activity’s preferred time (lower is better)
• Secondary metrics can be swapped or combined in a non-strict hierarchy
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Max Step Reprioritization

• For each activity that is not scheduled, 
assign it the highest priority.
• Since this is a fixed operation, it is 

possible for Max Step Reprioritization 
to encounter a cycle for a valid input 
plan.
• When a cycle is encountered, randomly 

restart.
• Can be too coarse in its search and 

promote activities more than 
necessary.

10



Stochastic Step Reprioritization

• For each activity that is not scheduled, 
increase its relative priority by a 
random x ∈ {1…len(activities)}.
• The randomness allows us to escape cycles, 

plateus, and local maximas.
• It also emulates search without actually having to 

search.

• Randomness doesn’t guarantee the solution 
will be found.
• Runtime is not insignificant.
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Intersect Reprioritization

• For each activity that is not scheduled, 
increase its priority above those that share 
resource bits and have intersecting execution 
time windows.
• Time is one of the most constraining 

resources. Therefore, only promote above 
activities where time is a conflicting resource.
• Energy is much harder to impact by changing 

priorities.
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Intermediate Schedules

• Other methods focused on the final executed schedule, but the 
intermediate schedules may provide additional information.
• If an activity was executed, but not scheduled in any intermediate 

schedule, then its priority is increased by (weight * number of failed 
schedules)
• If an activity failed to execute then it’s priority is increased by (weight 

* number of failed executions)
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Preferred Time Manipulation

• 1) Start Time Windows - Preferred times of an activity is shifted such that the 
activity’s expected placement does not intersect with the execution time 
windows of activities that share resource bits.
• 2) Past Start Time – Shift activities away from regions where activities sharing 

resource bits were successfully scheduled in previous Monte Carlos.
• Stochastically shift to Earliest Start, Midpoint, Latest Start, or random time within 

execution time window if (1) and (2) are unable to provide a place to schedule the 
activity.
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Portfolio

• Stochastically choose one of the previous heuristics at each step of 
the search.
• Currently a uniform distribution, but a better distribution could be 

learned.
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Empirical Evaluation
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Model to Vary Activity Durations
• Use predicted and actual durations from MSL 

Submaster Data

• Scale actual durations values by dividing by 
corresponding conservative durations

• Use linear regression on scaled values to 
derive mean and standard deviation
• Assume ratio of predicted to actual 

execution times is normally distributed
• Value on regression line for conservative 

duration is mean
• Activities complete on average 32 % early
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Sol Type Variations
• Sol Types- currently best available data on expected M2020 rover 

operations
• Not always completely serial, contain execution, dependency constraints
• 8 different sol type variations

• Average number of activities scheduled
• Higher (lower value) is better
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Activity Duration Variance Shrink Execution Time Window Varied Incoming SOC

0% activities finish late (mean 70%) 90% overall size (-5% each side) 100% maximum SOC

10% activities finish late (mean 70%) 80% overall size (-10% each side) 90% maximum SOC

20% activities finish late (mean 70%) 70% overall size (-15% each side) 80% maximum SOC

30% activities finish late (mean 70%) 60% overall size (-20% each side) 70% maximum SOC

40% activities finish late (mean 70%) 50% overall size (-25% each side) 60% maximum SOC



Results
• All Parameter Search methods consistently beat 

static methods
• Different methods perform better under 

different constraints
• When activity duration variance is high, preferred time 

performs best
• When ET windows are shrunk, priority is more 

important

Varied Incoming SOC

High Activity Duration VarianceShrunken Execution Time Windows



• Portfolio performs better than all other 
methods overall.
• Converges faster
• Increase handover SOC
• Results are statistically significant (p < 0.01)

Results



Future Work 

• Learning techniques to improve portfolio weighting
• Current approach is too naive

• Better analysis of activities to avoid undershooting or overshooting 
• Vaquero, T. et al., Temporal Brittleness Analysis of Task Networks for Planetary 

Rovers. In Internal Conference on Automated Planning and Scheduling (ICAPS 
2019), Berkeley, CA, USA, July 2019.

• Decreasing overall Monte Carlo runtime
• Will allow for more time to search the parameter space
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Conclusions

• Parameter setting for M2020 OBP is challenging search problem 
• Offline (ground) priority setting with Monte Carlo over a probabilistic 

model of duration can be formulated as SWO (analogue) problem
• We have proposed and evaluated several approaches of Parameter 

Search to solve the activity parameter assignment problem.
• Parameter Search outperforms all static algorithms for activity 

parameter assignment.
• A portfolio of Parameter Search methods allows for robustness to multiple 

types of plans
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